Metamath Proof Explorer


Theorem 0oval

Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0oval.1 𝑋 = ( BaseSet ‘ 𝑈 )
0oval.6 𝑍 = ( 0vec𝑊 )
0oval.0 𝑂 = ( 𝑈 0op 𝑊 )
Assertion 0oval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 0oval.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 0oval.6 𝑍 = ( 0vec𝑊 )
3 0oval.0 𝑂 = ( 𝑈 0op 𝑊 )
4 1 2 3 0ofval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) )
5 4 fveq1d ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑂𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) )
6 5 3adant3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) )
7 2 fvexi 𝑍 ∈ V
8 7 fvconst2 ( 𝐴𝑋 → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 )
9 8 3ad2ant3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 )
10 6 9 eqtrd ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) = 𝑍 )