Step |
Hyp |
Ref |
Expression |
1 |
|
0oval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
0oval.6 |
⊢ 𝑍 = ( 0vec ‘ 𝑊 ) |
3 |
|
0oval.0 |
⊢ 𝑂 = ( 𝑈 0op 𝑊 ) |
4 |
1 2 3
|
0ofval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) ) |
5 |
4
|
fveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) ) |
7 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
8 |
7
|
fvconst2 |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = 𝑍 ) |