| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0pledm.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
0pledm.2 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 3 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ℂ ↔ ( ℂ ∩ 𝐴 ) = 𝐴 ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( ℂ ∩ 𝐴 ) = 𝐴 ) |
| 5 |
4
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( ℂ ∩ 𝐴 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 |
|
0cn |
⊢ 0 ∈ ℂ |
| 7 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ℂ × { 0 } ) Fn ℂ |
| 9 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
| 10 |
9
|
fneq1i |
⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 11 |
8 10
|
mpbir |
⊢ 0𝑝 Fn ℂ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 0𝑝 Fn ℂ ) |
| 13 |
|
cnex |
⊢ ℂ ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 15 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐴 ∈ V ) |
| 16 |
1 13 15
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 17 |
|
eqid |
⊢ ( ℂ ∩ 𝐴 ) = ( ℂ ∩ 𝐴 ) |
| 18 |
|
0pval |
⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 20 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 21 |
12 2 14 16 17 19 20
|
ofrfval |
⊢ ( 𝜑 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ( ℂ ∩ 𝐴 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 23 |
6 22
|
ax-mp |
⊢ ( 𝐴 × { 0 } ) Fn 𝐴 |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 25 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 26 |
|
c0ex |
⊢ 0 ∈ V |
| 27 |
26
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 29 |
24 2 16 16 25 28 20
|
ofrfval |
⊢ ( 𝜑 → ( ( 𝐴 × { 0 } ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 |
5 21 29
|
3bitr4d |
⊢ ( 𝜑 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ( 𝐴 × { 0 } ) ∘r ≤ 𝐹 ) ) |