Step |
Hyp |
Ref |
Expression |
1 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
2 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) → 𝐹 : ℝ ⟶ ℝ ) |
4 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
5 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
5
|
baib |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
4 6
|
syl |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7
|
ralbidva |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) |
10 |
|
ffnfv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
11 |
10
|
baib |
⊢ ( 𝐹 Fn ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
13 |
|
0cn |
⊢ 0 ∈ ℂ |
14 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) |
15 |
13 14
|
ax-mp |
⊢ ( ℂ × { 0 } ) Fn ℂ |
16 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
17 |
16
|
fneq1i |
⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
18 |
15 17
|
mpbir |
⊢ 0𝑝 Fn ℂ |
19 |
18
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → 0𝑝 Fn ℂ ) |
20 |
|
cnex |
⊢ ℂ ∈ V |
21 |
20
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ℂ ∈ V ) |
22 |
|
reex |
⊢ ℝ ∈ V |
23 |
22
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V ) |
24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
25 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) |
26 |
24 25
|
mpbi |
⊢ ( ℂ ∩ ℝ ) = ℝ |
27 |
|
0pval |
⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
28 |
27
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
29 |
|
eqidd |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
30 |
19 9 21 23 26 28 29
|
ofrfval |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
8 12 30
|
3bitr4d |
⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ 0𝑝 ∘r ≤ 𝐹 ) ) |
32 |
3 31
|
biadanii |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) ) |