Metamath Proof Explorer


Theorem 0plef

Description: Two ways to say that the function F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Assertion 0plef ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) )

Proof

Step Hyp Ref Expression
1 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
2 fss ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ )
3 1 2 mpan2 ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) → 𝐹 : ℝ ⟶ ℝ )
4 ffvelrn ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
5 elrege0 ( ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹𝑥 ) ) )
6 5 baib ( ( 𝐹𝑥 ) ∈ ℝ → ( ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹𝑥 ) ) )
7 4 6 syl ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹𝑥 ) ) )
8 7 ralbidva ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹𝑥 ) ) )
9 ffn ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ )
10 ffnfv ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ) )
11 10 baib ( 𝐹 Fn ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ) )
12 9 11 syl ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ∈ ( 0 [,) +∞ ) ) )
13 0cn 0 ∈ ℂ
14 fnconstg ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ )
15 13 14 ax-mp ( ℂ × { 0 } ) Fn ℂ
16 df-0p 0𝑝 = ( ℂ × { 0 } )
17 16 fneq1i ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ )
18 15 17 mpbir 0𝑝 Fn ℂ
19 18 a1i ( 𝐹 : ℝ ⟶ ℝ → 0𝑝 Fn ℂ )
20 cnex ℂ ∈ V
21 20 a1i ( 𝐹 : ℝ ⟶ ℝ → ℂ ∈ V )
22 reex ℝ ∈ V
23 22 a1i ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V )
24 ax-resscn ℝ ⊆ ℂ
25 sseqin2 ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ )
26 24 25 mpbi ( ℂ ∩ ℝ ) = ℝ
27 0pval ( 𝑥 ∈ ℂ → ( 0𝑝𝑥 ) = 0 )
28 27 adantl ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℂ ) → ( 0𝑝𝑥 ) = 0 )
29 eqidd ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
30 19 9 21 23 26 28 29 ofrfval ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝r𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹𝑥 ) ) )
31 8 12 30 3bitr4d ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ 0𝑝r𝐹 ) )
32 3 31 biadanii ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝r𝐹 ) )