Metamath Proof Explorer


Theorem 0posOLD

Description: Obsolete proof of 0pos as of 13-Oct-2024. (Contributed by Stefan O'Rear, 30-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 0posOLD ∅ ∈ Poset

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 ral0 𝑎 ∈ ∅ ∀ 𝑏 ∈ ∅ ∀ 𝑐 ∈ ∅ ( 𝑎𝑎 ∧ ( ( 𝑎𝑏𝑏𝑎 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑎𝑏𝑏𝑐 ) → 𝑎𝑐 ) )
3 base0 ∅ = ( Base ‘ ∅ )
4 df-ple le = Slot 1 0
5 4 str0 ∅ = ( le ‘ ∅ )
6 3 5 ispos ( ∅ ∈ Poset ↔ ( ∅ ∈ V ∧ ∀ 𝑎 ∈ ∅ ∀ 𝑏 ∈ ∅ ∀ 𝑐 ∈ ∅ ( 𝑎𝑎 ∧ ( ( 𝑎𝑏𝑏𝑎 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑎𝑏𝑏𝑐 ) → 𝑎𝑐 ) ) ) )
7 1 2 6 mpbir2an ∅ ∈ Poset