Metamath Proof Explorer


Theorem 0pss

Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996)

Ref Expression
Assertion 0pss ( ∅ ⊊ 𝐴𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ 𝐴
2 df-pss ( ∅ ⊊ 𝐴 ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴 ) )
3 1 2 mpbiran ( ∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴 )
4 necom ( ∅ ≠ 𝐴𝐴 ≠ ∅ )
5 3 4 bitri ( ∅ ⊊ 𝐴𝐴 ≠ ∅ )