Step |
Hyp |
Ref |
Expression |
1 |
|
0psub.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
0ss |
⊢ ∅ ⊆ ( Atoms ‘ 𝐾 ) |
3 |
|
ral0 |
⊢ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) |
4 |
2 3
|
pm3.2i |
⊢ ( ∅ ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
8 |
5 6 7 1
|
ispsubsp |
⊢ ( 𝐾 ∈ 𝑉 → ( ∅ ∈ 𝑆 ↔ ( ∅ ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) ) ) ) |
9 |
4 8
|
mpbiri |
⊢ ( 𝐾 ∈ 𝑉 → ∅ ∈ 𝑆 ) |