Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 0pval | ⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
2 | 1 | fveq1i | ⊢ ( 0𝑝 ‘ 𝐴 ) = ( ( ℂ × { 0 } ) ‘ 𝐴 ) |
3 | c0ex | ⊢ 0 ∈ V | |
4 | 3 | fvconst2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 0 } ) ‘ 𝐴 ) = 0 ) |
5 | 2 4 | syl5eq | ⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) |