Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0pval | ⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 2 | 1 | fveq1i | ⊢ ( 0𝑝 ‘ 𝐴 ) = ( ( ℂ × { 0 } ) ‘ 𝐴 ) |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 0 } ) ‘ 𝐴 ) = 0 ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) |