Metamath Proof Explorer


Theorem 0pval

Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion 0pval ( 𝐴 ∈ ℂ → ( 0𝑝𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 df-0p 0𝑝 = ( ℂ × { 0 } )
2 1 fveq1i ( 0𝑝𝐴 ) = ( ( ℂ × { 0 } ) ‘ 𝐴 )
3 c0ex 0 ∈ V
4 3 fvconst2 ( 𝐴 ∈ ℂ → ( ( ℂ × { 0 } ) ‘ 𝐴 ) = 0 )
5 2 4 syl5eq ( 𝐴 ∈ ℂ → ( 0𝑝𝐴 ) = 0 )