Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0r | ⊢ 0R ∈ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr | ⊢ 1P ∈ P | |
2 | opelxpi | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → 〈 1P , 1P 〉 ∈ ( P × P ) ) | |
3 | 1 1 2 | mp2an | ⊢ 〈 1P , 1P 〉 ∈ ( P × P ) |
4 | enrex | ⊢ ~R ∈ V | |
5 | 4 | ecelqsi | ⊢ ( 〈 1P , 1P 〉 ∈ ( P × P ) → [ 〈 1P , 1P 〉 ] ~R ∈ ( ( P × P ) / ~R ) ) |
6 | 3 5 | ax-mp | ⊢ [ 〈 1P , 1P 〉 ] ~R ∈ ( ( P × P ) / ~R ) |
7 | df-0r | ⊢ 0R = [ 〈 1P , 1P 〉 ] ~R | |
8 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
9 | 6 7 8 | 3eltr4i | ⊢ 0R ∈ R |