Metamath Proof Explorer


Theorem 0r

Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion 0r 0RR

Proof

Step Hyp Ref Expression
1 1pr 1PP
2 opelxpi ( ( 1PP ∧ 1PP ) → ⟨ 1P , 1P ⟩ ∈ ( P × P ) )
3 1 1 2 mp2an ⟨ 1P , 1P ⟩ ∈ ( P × P )
4 enrex ~R ∈ V
5 4 ecelqsi ( ⟨ 1P , 1P ⟩ ∈ ( P × P ) → [ ⟨ 1P , 1P ⟩ ] ~R ∈ ( ( P × P ) / ~R ) )
6 3 5 ax-mp [ ⟨ 1P , 1P ⟩ ] ~R ∈ ( ( P × P ) / ~R )
7 df-0r 0R = [ ⟨ 1P , 1P ⟩ ] ~R
8 df-nr R = ( ( P × P ) / ~R )
9 6 7 8 3eltr4i 0RR