Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
3 |
2
|
a1i |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 0 ∈ ℕ0 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝑅 ∈ 𝑉 ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
6 |
5
|
frnd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ⊆ ℕ0 ) |
7 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
8 |
6 7
|
sstrdi |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ⊆ ℤ ) |
9 |
5
|
fdmd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → dom 𝐹 = 𝑅 ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝑅 ≠ ∅ ) |
11 |
9 10
|
eqnetrd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → dom 𝐹 ≠ ∅ ) |
12 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
13 |
12
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
14 |
11 13
|
sylib |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ≠ ∅ ) |
15 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
16 |
|
suprzcl2 |
⊢ ( ( ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
17 |
8 14 15 16
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
18 |
6 17
|
sseldd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℕ0 ) |
19 |
1
|
hashbc0 |
⊢ ( 𝑠 ∈ V → ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
20 |
19
|
elv |
⊢ ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
21 |
20
|
feq2i |
⊢ ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ↔ 𝑓 : { ∅ } ⟶ 𝑅 ) |
22 |
21
|
biimpi |
⊢ ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 → 𝑓 : { ∅ } ⟶ 𝑅 ) |
23 |
|
simprr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝑓 : { ∅ } ⟶ 𝑅 ) |
24 |
|
0ex |
⊢ ∅ ∈ V |
25 |
24
|
snid |
⊢ ∅ ∈ { ∅ } |
26 |
|
ffvelrn |
⊢ ( ( 𝑓 : { ∅ } ⟶ 𝑅 ∧ ∅ ∈ { ∅ } ) → ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) |
27 |
23 25 26
|
sylancl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) |
28 |
|
vex |
⊢ 𝑠 ∈ V |
29 |
28
|
pwid |
⊢ 𝑠 ∈ 𝒫 𝑠 |
30 |
29
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝑠 ∈ 𝒫 𝑠 ) |
31 |
5
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
32 |
31 27
|
ffvelrnd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℕ0 ) |
33 |
32
|
nn0red |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℝ ) |
34 |
33
|
rexrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℝ* ) |
35 |
18
|
nn0red |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
36 |
35
|
rexrd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ* ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ* ) |
38 |
|
hashxrcl |
⊢ ( 𝑠 ∈ V → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
39 |
28 38
|
mp1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
40 |
8
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ran 𝐹 ⊆ ℤ ) |
41 |
15
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
42 |
31
|
ffnd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝐹 Fn 𝑅 ) |
43 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑅 ∧ ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) |
44 |
42 27 43
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) |
45 |
|
suprzub |
⊢ ( ( ran 𝐹 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ∧ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
46 |
40 41 44 45
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
47 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ) |
48 |
34 37 39 46 47
|
xrletrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ) |
49 |
25
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∅ ∈ { ∅ } ) |
50 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
51 |
50
|
snid |
⊢ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } |
52 |
51
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) |
53 |
|
ffn |
⊢ ( 𝑓 : { ∅ } ⟶ 𝑅 → 𝑓 Fn { ∅ } ) |
54 |
|
elpreima |
⊢ ( 𝑓 Fn { ∅ } → ( ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ↔ ( ∅ ∈ { ∅ } ∧ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) ) ) |
55 |
23 53 54
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ↔ ( ∅ ∈ { ∅ } ∧ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) ) ) |
56 |
49 52 55
|
mpbir2and |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) |
57 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ) |
58 |
57
|
breq1d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ) ) |
59 |
1
|
hashbc0 |
⊢ ( 𝑧 ∈ V → ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
60 |
59
|
elv |
⊢ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
61 |
60
|
sseq1i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ { ∅ } ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
62 |
24
|
snss |
⊢ ( ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ { ∅ } ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
63 |
61 62
|
bitr4i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ) |
64 |
|
sneq |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → { 𝑐 } = { ( 𝑓 ‘ ∅ ) } ) |
65 |
64
|
imaeq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) |
66 |
65
|
eleq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) |
67 |
63 66
|
syl5bb |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) |
68 |
58 67
|
anbi12d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑧 = 𝑠 → ( ♯ ‘ 𝑧 ) = ( ♯ ‘ 𝑠 ) ) |
70 |
69
|
breq2d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ) ) |
71 |
70
|
anbi1d |
⊢ ( 𝑧 = 𝑠 → ( ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ↔ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) ) |
72 |
68 71
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ ∅ ) ∈ 𝑅 ∧ 𝑠 ∈ 𝒫 𝑠 ∧ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
73 |
27 30 48 56 72
|
syl112anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
74 |
22 73
|
sylanr2 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
75 |
1 3 4 5 18 74
|
ramub |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
76 |
|
ffn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → 𝐹 Fn 𝑅 ) |
77 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑅 → ( sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) ) |
78 |
5 76 77
|
3syl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) ) |
79 |
17 78
|
mpbid |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) |
80 |
2
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 0 ∈ ℕ0 ) |
81 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝑅 ∈ 𝑉 ) |
82 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
83 |
|
nnm1nn0 |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
84 |
83
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
85 |
|
vex |
⊢ 𝑐 ∈ V |
86 |
24 85
|
f1osn |
⊢ { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } |
87 |
|
f1of |
⊢ ( { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } ) |
88 |
86 87
|
ax-mp |
⊢ { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } |
89 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝑐 ∈ 𝑅 ) |
90 |
89
|
snssd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 𝑐 } ⊆ 𝑅 ) |
91 |
|
fss |
⊢ ( ( { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } ∧ { 𝑐 } ⊆ 𝑅 ) → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
92 |
88 90 91
|
sylancr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
93 |
|
ovex |
⊢ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ V |
94 |
1
|
hashbc0 |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ V → ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
95 |
93 94
|
ax-mp |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
96 |
95
|
feq2i |
⊢ ( { 〈 ∅ , 𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ↔ { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
97 |
92 96
|
sylibr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 〈 ∅ , 𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ) |
98 |
60
|
sseq1i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ { ∅ } ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
99 |
24
|
snss |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ { ∅ } ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
100 |
98 99
|
bitr4i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
101 |
|
fzfid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin ) |
102 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
103 |
|
ssdomg |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin → ( 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) → 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
104 |
101 102 103
|
sylc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
105 |
101 102
|
ssfid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ∈ Fin ) |
106 |
|
hashdom |
⊢ ( ( 𝑧 ∈ Fin ∧ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ↔ 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
107 |
105 101 106
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ↔ 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
108 |
104 107
|
mpbird |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
109 |
84
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
110 |
|
hashfz1 |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
111 |
109 110
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
112 |
108 111
|
breqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
113 |
|
hashcl |
⊢ ( 𝑧 ∈ Fin → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
114 |
105 113
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
115 |
5
|
ffvelrnda |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
116 |
115
|
adantrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
117 |
116
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
118 |
|
nn0ltlem1 |
⊢ ( ( ( ♯ ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
119 |
114 117 118
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
120 |
112 119
|
mpbird |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ) |
121 |
24 85
|
fvsn |
⊢ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) = 𝑐 |
122 |
|
f1ofn |
⊢ ( { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } → { 〈 ∅ , 𝑐 〉 } Fn { ∅ } ) |
123 |
|
elpreima |
⊢ ( { 〈 ∅ , 𝑐 〉 } Fn { ∅ } → ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ( ∅ ∈ { ∅ } ∧ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) ) ) |
124 |
86 122 123
|
mp2b |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ( ∅ ∈ { ∅ } ∧ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) ) |
125 |
124
|
simprbi |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) |
126 |
121 125
|
eqeltrrid |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → 𝑐 ∈ { 𝑑 } ) |
127 |
|
elsni |
⊢ ( 𝑐 ∈ { 𝑑 } → 𝑐 = 𝑑 ) |
128 |
126 127
|
syl |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → 𝑐 = 𝑑 ) |
129 |
128
|
fveq2d |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑑 ) ) |
130 |
129
|
breq2d |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
131 |
120 130
|
syl5ibcom |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
132 |
100 131
|
syl5bi |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
133 |
1 80 81 82 84 97 132
|
ramlb |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) |
134 |
|
ramubcl |
⊢ ( ( ( 0 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ∈ ℕ0 ∧ ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
135 |
3 4 5 18 75 134
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
136 |
135
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
137 |
|
nn0lem1lt |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ∧ ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) ) |
138 |
116 136 137
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) ) |
139 |
133 138
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) |
140 |
139
|
expr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
141 |
135
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
142 |
141
|
nn0ge0d |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → 0 ≤ ( 0 Ramsey 𝐹 ) ) |
143 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 0 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ 0 ≤ ( 0 Ramsey 𝐹 ) ) ) |
144 |
142 143
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) = 0 → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
145 |
|
elnn0 |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ↔ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ ∨ ( 𝐹 ‘ 𝑐 ) = 0 ) ) |
146 |
115 145
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ ∨ ( 𝐹 ‘ 𝑐 ) = 0 ) ) |
147 |
140 144 146
|
mpjaod |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) |
148 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
149 |
147 148
|
syl5ibcom |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
150 |
149
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
151 |
79 150
|
mpd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) |
152 |
135
|
nn0red |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ∈ ℝ ) |
153 |
152 35
|
letri3d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ↔ ( ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ∧ sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) ) |
154 |
75 151 153
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ) |