Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → ran 𝐹 ⊆ ℕ0 ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℕ0 ) |
3 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
4 |
2 3
|
sstrdi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℤ ) |
5 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
6 |
2 5
|
sstrdi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℝ ) |
7 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑅 ∈ Fin ) |
8 |
|
ffn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → 𝐹 Fn 𝑅 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝐹 Fn 𝑅 ) |
10 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑅 ↔ 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
12 |
|
fofi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) |
13 |
7 11 12
|
syl2anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ∈ Fin ) |
14 |
|
fdm |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → dom 𝐹 = 𝑅 ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → dom 𝐹 = 𝑅 ) |
16 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑅 ≠ ∅ ) |
17 |
15 16
|
eqnetrd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → dom 𝐹 ≠ ∅ ) |
18 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
19 |
18
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
20 |
17 19
|
sylib |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ≠ ∅ ) |
21 |
|
fimaxre |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ) → ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
22 |
6 13 20 21
|
syl3anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
23 |
|
ssrexv |
⊢ ( ran 𝐹 ⊆ ℤ → ( ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
24 |
4 22 23
|
sylc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
25 |
|
0ram |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ) |
26 |
24 25
|
mpdan |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ) |