Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → 𝐹 Fn 𝑅 ) |
2 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑅 ↔ 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
5 |
|
foeq2 |
⊢ ( 𝑅 = ∅ → ( 𝐹 : 𝑅 –onto→ ran 𝐹 ↔ 𝐹 : ∅ –onto→ ran 𝐹 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( 𝐹 : 𝑅 –onto→ ran 𝐹 ↔ 𝐹 : ∅ –onto→ ran 𝐹 ) ) |
7 |
4 6
|
mpbid |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → 𝐹 : ∅ –onto→ ran 𝐹 ) |
8 |
|
fo00 |
⊢ ( 𝐹 : ∅ –onto→ ran 𝐹 ↔ ( 𝐹 = ∅ ∧ ran 𝐹 = ∅ ) ) |
9 |
8
|
simplbi |
⊢ ( 𝐹 : ∅ –onto→ ran 𝐹 → 𝐹 = ∅ ) |
10 |
7 9
|
syl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → 𝐹 = ∅ ) |
11 |
10
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( 0 Ramsey 𝐹 ) = ( 0 Ramsey ∅ ) ) |
12 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
13 |
|
ram0 |
⊢ ( 0 ∈ ℕ0 → ( 0 Ramsey ∅ ) = 0 ) |
14 |
12 13
|
ax-mp |
⊢ ( 0 Ramsey ∅ ) = 0 |
15 |
14 12
|
eqeltri |
⊢ ( 0 Ramsey ∅ ) ∈ ℕ0 |
16 |
11 15
|
eqeltrdi |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
17 |
|
0ram2 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ) |
18 |
|
frn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → ran 𝐹 ⊆ ℕ0 ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℕ0 ) |
20 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
21 |
19 20
|
sstrdi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℤ ) |
22 |
|
fdm |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → dom 𝐹 = 𝑅 ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → dom 𝐹 = 𝑅 ) |
24 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑅 ≠ ∅ ) |
25 |
23 24
|
eqnetrd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → dom 𝐹 ≠ ∅ ) |
26 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
27 |
26
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
28 |
25 27
|
sylib |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ≠ ∅ ) |
29 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
30 |
19 29
|
sstrdi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ⊆ ℝ ) |
31 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑅 ∈ Fin ) |
32 |
3
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝐹 : 𝑅 –onto→ ran 𝐹 ) |
33 |
|
fofi |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) |
34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ran 𝐹 ∈ Fin ) |
35 |
|
fimaxre |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ) → ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
36 |
30 34 28 35
|
syl3anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
37 |
|
ssrexv |
⊢ ( ran 𝐹 ⊆ ℤ → ( ∃ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
38 |
21 36 37
|
sylc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
39 |
|
suprzcl2 |
⊢ ( ( ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
40 |
21 28 38 39
|
syl3anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
41 |
19 40
|
sseldd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℕ0 ) |
42 |
17 41
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
43 |
42
|
3expa |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ) ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
44 |
43
|
an32s |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
45 |
16 44
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |