Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
cnre |
⊢ ( 1 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) ) |
3 |
|
ax-rnegex |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 ) |
4 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑥 + 𝑧 ) ∈ ℝ ) |
5 |
|
eleq1 |
⊢ ( ( 𝑥 + 𝑧 ) = 0 → ( ( 𝑥 + 𝑧 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) |
6 |
4 5
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
7 |
6
|
rexlimdva |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
8 |
3 7
|
mpd |
⊢ ( 𝑥 ∈ ℝ → 0 ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) ) → 0 ∈ ℝ ) |
10 |
9
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) → 0 ∈ ℝ ) |
11 |
1 2 10
|
mp2b |
⊢ 0 ∈ ℝ |