Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
restval |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ↾t 𝐴 ) = ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
4 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ∅ |
5 |
4
|
rneqi |
⊢ ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ran ∅ |
6 |
|
rn0 |
⊢ ran ∅ = ∅ |
7 |
5 6
|
eqtri |
⊢ ran ( 𝑥 ∈ ∅ ↦ ( 𝑥 ∩ 𝐴 ) ) = ∅ |
8 |
3 7
|
eqtrdi |
⊢ ( 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ∅ ) |
9 |
|
relxp |
⊢ Rel ( V × V ) |
10 |
|
restfn |
⊢ ↾t Fn ( V × V ) |
11 |
10
|
fndmi |
⊢ dom ↾t = ( V × V ) |
12 |
11
|
releqi |
⊢ ( Rel dom ↾t ↔ Rel ( V × V ) ) |
13 |
9 12
|
mpbir |
⊢ Rel dom ↾t |
14 |
13
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( ∅ ↾t 𝐴 ) = ∅ ) |
15 |
8 14
|
pm2.61i |
⊢ ( ∅ ↾t 𝐴 ) = ∅ |