| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 0ring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | 0ring01eq.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 | 1 2 | 0ring | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐵  =  {  0  } ) | 
						
							| 5 | 1 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝐵  =  {  0  }  →  (  1   ∈  𝐵  ↔   1   ∈  {  0  } ) ) | 
						
							| 7 |  | elsni | ⊢ (  1   ∈  {  0  }  →   1   =   0  ) | 
						
							| 8 | 7 | eqcomd | ⊢ (  1   ∈  {  0  }  →   0   =   1  ) | 
						
							| 9 | 6 8 | biimtrdi | ⊢ ( 𝐵  =  {  0  }  →  (  1   ∈  𝐵  →   0   =   1  ) ) | 
						
							| 10 | 5 9 | syl5com | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐵  =  {  0  }  →   0   =   1  ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( 𝐵  =  {  0  }  →   0   =   1  ) ) | 
						
							| 12 | 4 11 | mpd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →   0   =   1  ) |