Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ring.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
0ring01eq.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1 2
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
5 |
1 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
6 |
|
eleq2 |
⊢ ( 𝐵 = { 0 } → ( 1 ∈ 𝐵 ↔ 1 ∈ { 0 } ) ) |
7 |
|
elsni |
⊢ ( 1 ∈ { 0 } → 1 = 0 ) |
8 |
7
|
eqcomd |
⊢ ( 1 ∈ { 0 } → 0 = 1 ) |
9 |
6 8
|
syl6bi |
⊢ ( 𝐵 = { 0 } → ( 1 ∈ 𝐵 → 0 = 1 ) ) |
10 |
5 9
|
syl5com |
⊢ ( 𝑅 ∈ Ring → ( 𝐵 = { 0 } → 0 = 1 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝐵 = { 0 } → 0 = 1 ) ) |
12 |
4 11
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 0 = 1 ) |