Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ring.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
0ring01eq.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
5 |
|
hashen1 |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 ≈ 1o ) ) |
6 |
4 5
|
mp1i |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 ≈ 1o ) ) |
7 |
1 2 3
|
0ring01eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 0 = 1 ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 1 = 0 ) |
9 |
8
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 → 1 = 0 ) ) |
10 |
|
eqcom |
⊢ ( 1 = 0 ↔ 0 = 1 ) |
11 |
1 2 3
|
01eq0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |
12 |
|
fveq2 |
⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 0 } ) ) |
13 |
2
|
fvexi |
⊢ 0 ∈ V |
14 |
|
hashsng |
⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) |
15 |
13 14
|
mp1i |
⊢ ( 𝐵 = { 0 } → ( ♯ ‘ { 0 } ) = 1 ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = 1 ) |
17 |
11 16
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
18 |
17
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 0 = 1 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
19 |
10 18
|
syl5bi |
⊢ ( 𝑅 ∈ Ring → ( 1 = 0 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
20 |
9 19
|
impbid |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 1 = 0 ) ) |
21 |
6 20
|
bitr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝐵 ≈ 1o ↔ 1 = 0 ) ) |