| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 0ring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | 0ring01eq.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | hashen1 | ⊢ ( 𝐵  ∈  V  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔  𝐵  ≈  1o ) ) | 
						
							| 6 | 4 5 | mp1i | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔  𝐵  ≈  1o ) ) | 
						
							| 7 | 1 2 3 | 0ring01eq | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →   0   =   1  ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →   1   =   0  ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  →   1   =   0  ) ) | 
						
							| 10 |  | eqcom | ⊢ (  1   =   0   ↔   0   =   1  ) | 
						
							| 11 | 1 2 3 | 01eq0ring | ⊢ ( ( 𝑅  ∈  Ring  ∧   0   =   1  )  →  𝐵  =  {  0  } ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝐵  =  {  0  }  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ {  0  } ) ) | 
						
							| 13 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 14 |  | hashsng | ⊢ (  0   ∈  V  →  ( ♯ ‘ {  0  } )  =  1 ) | 
						
							| 15 | 13 14 | mp1i | ⊢ ( 𝐵  =  {  0  }  →  ( ♯ ‘ {  0  } )  =  1 ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( 𝐵  =  {  0  }  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 17 | 11 16 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧   0   =   1  )  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑅  ∈  Ring  →  (  0   =   1   →  ( ♯ ‘ 𝐵 )  =  1 ) ) | 
						
							| 19 | 10 18 | biimtrid | ⊢ ( 𝑅  ∈  Ring  →  (  1   =   0   →  ( ♯ ‘ 𝐵 )  =  1 ) ) | 
						
							| 20 | 9 19 | impbid | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔   1   =   0  ) ) | 
						
							| 21 | 6 20 | bitr3d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐵  ≈  1o  ↔   1   =   0  ) ) |