| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 0ring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | 0ring01eq.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eldif | ⊢ ( 𝑅  ∈  ( Ring  ∖  NzRing )  ↔  ( 𝑅  ∈  Ring  ∧  ¬  𝑅  ∈  NzRing ) ) | 
						
							| 5 |  | 0ringnnzr | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1  ↔  ¬  𝑅  ∈  NzRing ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 | 6 2 3 | 0ring01eq | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1 )  →   0   =   1  ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1 )  →   1   =   0  ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1  →   1   =   0  ) ) | 
						
							| 10 | 5 9 | sylbird | ⊢ ( 𝑅  ∈  Ring  →  ( ¬  𝑅  ∈  NzRing  →   1   =   0  ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝑅  ∈  Ring  ∧  ¬  𝑅  ∈  NzRing )  →   1   =   0  ) | 
						
							| 12 | 4 11 | sylbi | ⊢ ( 𝑅  ∈  ( Ring  ∖  NzRing )  →   1   =   0  ) |