Step |
Hyp |
Ref |
Expression |
1 |
|
0ringcring.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringcring.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
0ringcring.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
4 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
4 7
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
10 |
4
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
13 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
14 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
15 |
1 7 12 13 14
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
16 |
1 7 12 13 14
|
ringrzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
17 |
15 16
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
18 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
19 |
1 12
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
20 |
2 3 19
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
22 |
18 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ { ( 0g ‘ 𝑅 ) } ) |
23 |
|
elsni |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝑅 ) } → 𝑥 = ( 0g ‘ 𝑅 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = ( 0g ‘ 𝑅 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) |
26 |
24
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
27 |
17 25 26
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
28 |
6 9 11 27
|
iscmnd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
29 |
4
|
iscrng |
⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ) |
30 |
2 28 29
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |