Metamath Proof Explorer


Theorem 0ringcring

Description: The zero ring is commutative. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses 0ringcring.1 𝐵 = ( Base ‘ 𝑅 )
0ringcring.2 ( 𝜑𝑅 ∈ Ring )
0ringcring.3 ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 )
Assertion 0ringcring ( 𝜑𝑅 ∈ CRing )

Proof

Step Hyp Ref Expression
1 0ringcring.1 𝐵 = ( Base ‘ 𝑅 )
2 0ringcring.2 ( 𝜑𝑅 ∈ Ring )
3 0ringcring.3 ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 )
4 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
5 4 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
6 5 a1i ( 𝜑𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )
7 eqid ( .r𝑅 ) = ( .r𝑅 )
8 4 7 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
9 8 a1i ( 𝜑 → ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) )
10 4 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
11 2 10 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
12 eqid ( 0g𝑅 ) = ( 0g𝑅 )
13 2 3ad2ant1 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑅 ∈ Ring )
14 simp3 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑦𝐵 )
15 1 7 12 13 14 ringlzd ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( ( 0g𝑅 ) ( .r𝑅 ) 𝑦 ) = ( 0g𝑅 ) )
16 1 7 12 13 14 ringrzd ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑦 ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
17 15 16 eqtr4d ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( ( 0g𝑅 ) ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) ( 0g𝑅 ) ) )
18 simp2 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑥𝐵 )
19 1 12 0ring ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { ( 0g𝑅 ) } )
20 2 3 19 syl2anc ( 𝜑𝐵 = { ( 0g𝑅 ) } )
21 20 3ad2ant1 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝐵 = { ( 0g𝑅 ) } )
22 18 21 eleqtrd ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑥 ∈ { ( 0g𝑅 ) } )
23 elsni ( 𝑥 ∈ { ( 0g𝑅 ) } → 𝑥 = ( 0g𝑅 ) )
24 22 23 syl ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑥 = ( 0g𝑅 ) )
25 24 oveq1d ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( ( 0g𝑅 ) ( .r𝑅 ) 𝑦 ) )
26 24 oveq2d ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑦 ( .r𝑅 ) 𝑥 ) = ( 𝑦 ( .r𝑅 ) ( 0g𝑅 ) ) )
27 17 25 26 3eqtr4d ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( 𝑦 ( .r𝑅 ) 𝑥 ) )
28 6 9 11 27 iscmnd ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
29 4 iscrng ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) )
30 2 28 29 sylanbrc ( 𝜑𝑅 ∈ CRing )