| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 0ring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | eldif | ⊢ ( 𝑅  ∈  ( Ring  ∖  NzRing )  ↔  ( 𝑅  ∈  Ring  ∧  ¬  𝑅  ∈  NzRing ) ) | 
						
							| 4 | 1 | a1i | ⊢ ( 𝑅  ∈  Ring  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 5 | 4 | fveqeq2d | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔  ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1 ) ) | 
						
							| 6 | 1 2 | 0ring | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐵  =  {  0  } ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  →  𝐵  =  {  0  } ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝐵  =  {  0  }  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ {  0  } ) ) | 
						
							| 9 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 10 |  | hashsng | ⊢ (  0   ∈  V  →  ( ♯ ‘ {  0  } )  =  1 ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ♯ ‘ {  0  } )  =  1 | 
						
							| 12 | 8 11 | eqtrdi | ⊢ ( 𝐵  =  {  0  }  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 13 | 7 12 | impbid1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔  𝐵  =  {  0  } ) ) | 
						
							| 14 |  | 0ringnnzr | ⊢ ( 𝑅  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ 𝑅 ) )  =  1  ↔  ¬  𝑅  ∈  NzRing ) ) | 
						
							| 15 | 5 13 14 | 3bitr3rd | ⊢ ( 𝑅  ∈  Ring  →  ( ¬  𝑅  ∈  NzRing  ↔  𝐵  =  {  0  } ) ) | 
						
							| 16 | 15 | pm5.32i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ¬  𝑅  ∈  NzRing )  ↔  ( 𝑅  ∈  Ring  ∧  𝐵  =  {  0  } ) ) | 
						
							| 17 | 3 16 | bitri | ⊢ ( 𝑅  ∈  ( Ring  ∖  NzRing )  ↔  ( 𝑅  ∈  Ring  ∧  𝐵  =  {  0  } ) ) |