Step |
Hyp |
Ref |
Expression |
1 |
|
0ringmon1p.1 |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
2 |
|
0ringmon1p.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
0ringmon1p.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
0ringmon1p.4 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
5 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
5 6 7 8 1 9
|
ismon1p |
⊢ ( 𝑝 ∈ 𝑀 ↔ ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
11 |
10
|
biimpi |
⊢ ( 𝑝 ∈ 𝑀 → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
13 |
12
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
15 |
12
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
16 |
12
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( coe1 ‘ 𝑝 ) = ( coe1 ‘ 𝑝 ) |
19 |
8 5 7 6 17 18
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
20 |
14 15 16 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
21 |
2 17 9
|
0ring01eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
22 |
3 4 21
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
24 |
20 23
|
neeqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 1r ‘ 𝑅 ) ) |
25 |
24
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ¬ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) |
26 |
13 25
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑝 ∈ 𝑀 ) |
27 |
26
|
eq0rdv |
⊢ ( 𝜑 → 𝑀 = ∅ ) |