Metamath Proof Explorer


Theorem 0ringmon1p

Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses 0ringmon1p.1 𝑀 = ( Monic1p𝑅 )
0ringmon1p.2 𝐵 = ( Base ‘ 𝑅 )
0ringmon1p.3 ( 𝜑𝑅 ∈ Ring )
0ringmon1p.4 ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 )
Assertion 0ringmon1p ( 𝜑𝑀 = ∅ )

Proof

Step Hyp Ref Expression
1 0ringmon1p.1 𝑀 = ( Monic1p𝑅 )
2 0ringmon1p.2 𝐵 = ( Base ‘ 𝑅 )
3 0ringmon1p.3 ( 𝜑𝑅 ∈ Ring )
4 0ringmon1p.4 ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 )
5 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
6 eqid ( Base ‘ ( Poly1𝑅 ) ) = ( Base ‘ ( Poly1𝑅 ) )
7 eqid ( 0g ‘ ( Poly1𝑅 ) ) = ( 0g ‘ ( Poly1𝑅 ) )
8 eqid ( deg1𝑅 ) = ( deg1𝑅 )
9 eqid ( 1r𝑅 ) = ( 1r𝑅 )
10 5 6 7 8 1 9 ismon1p ( 𝑝𝑀 ↔ ( 𝑝 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) )
11 10 biimpi ( 𝑝𝑀 → ( 𝑝 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) )
12 11 adantl ( ( 𝜑𝑝𝑀 ) → ( 𝑝 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ∧ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) ) )
13 12 simp3d ( ( 𝜑𝑝𝑀 ) → ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) )
14 3 adantr ( ( 𝜑𝑝𝑀 ) → 𝑅 ∈ Ring )
15 12 simp1d ( ( 𝜑𝑝𝑀 ) → 𝑝 ∈ ( Base ‘ ( Poly1𝑅 ) ) )
16 12 simp2d ( ( 𝜑𝑝𝑀 ) → 𝑝 ≠ ( 0g ‘ ( Poly1𝑅 ) ) )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 eqid ( coe1𝑝 ) = ( coe1𝑝 )
19 8 5 7 6 17 18 deg1ldg ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ) → ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g𝑅 ) )
20 14 15 16 19 syl3anc ( ( 𝜑𝑝𝑀 ) → ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g𝑅 ) )
21 2 17 9 0ring01eq ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 0g𝑅 ) = ( 1r𝑅 ) )
22 3 4 21 syl2anc ( 𝜑 → ( 0g𝑅 ) = ( 1r𝑅 ) )
23 22 adantr ( ( 𝜑𝑝𝑀 ) → ( 0g𝑅 ) = ( 1r𝑅 ) )
24 20 23 neeqtrd ( ( 𝜑𝑝𝑀 ) → ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) ≠ ( 1r𝑅 ) )
25 24 neneqd ( ( 𝜑𝑝𝑀 ) → ¬ ( ( coe1𝑝 ) ‘ ( ( deg1𝑅 ) ‘ 𝑝 ) ) = ( 1r𝑅 ) )
26 13 25 pm2.65da ( 𝜑 → ¬ 𝑝𝑀 )
27 26 eq0rdv ( 𝜑𝑀 = ∅ )