Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
1
|
ltnri |
⊢ ¬ 1 < 1 |
3 |
|
breq2 |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ( 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ↔ 1 < 1 ) ) |
4 |
2 3
|
mtbiri |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
6 |
5
|
intnand |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
7 |
6
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
8 |
|
ianor |
⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ ( ¬ 𝑅 ∈ Ring ∨ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
9 |
|
pm2.21 |
⊢ ( ¬ 𝑅 ∈ Ring → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
10 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
11 |
|
hashxrcl |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* ) |
12 |
10 11
|
ax-mp |
⊢ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* |
13 |
|
1xr |
⊢ 1 ∈ ℝ* |
14 |
|
xrlenlt |
⊢ ( ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
16 |
15
|
bicomi |
⊢ ( ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) |
17 |
|
simpr |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) |
18 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
19 |
|
hashbnd |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ 1 ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( Base ‘ 𝑅 ) ∈ Fin ) |
20 |
10 18 17 19
|
mp3an12i |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( Base ‘ 𝑅 ) ∈ Fin ) |
21 |
|
hashcl |
⊢ ( ( Base ‘ 𝑅 ) ∈ Fin → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) |
22 |
|
simpr |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) |
23 |
|
hasheq0 |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 ↔ ( Base ‘ 𝑅 ) = ∅ ) ) |
24 |
10 23
|
mp1i |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 ↔ ( Base ‘ 𝑅 ) = ∅ ) ) |
25 |
24
|
biimpd |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 0 → ( Base ‘ 𝑅 ) = ∅ ) ) |
26 |
25
|
necon3d |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) ) |
27 |
26
|
impcom |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) |
28 |
|
elnnne0 |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ↔ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≠ 0 ) ) |
29 |
22 27 28
|
sylanbrc |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) |
30 |
29
|
ex |
⊢ ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
31 |
30
|
adantr |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ0 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
32 |
21 31
|
syl5com |
⊢ ( ( Base ‘ 𝑅 ) ∈ Fin → ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) ) |
33 |
20 32
|
mpcom |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ ) |
34 |
|
nnle1eq1 |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ∈ ℕ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
36 |
17 35
|
mpbid |
⊢ ( ( ( Base ‘ 𝑅 ) ≠ ∅ ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
37 |
36
|
ex |
⊢ ( ( Base ‘ 𝑅 ) ≠ ∅ → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
38 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
40 |
39
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → ( Base ‘ 𝑅 ) ≠ ∅ ) |
41 |
38 40
|
syl |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ≠ ∅ ) |
42 |
37 41
|
syl11 |
⊢ ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) ≤ 1 → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
43 |
16 42
|
sylbi |
⊢ ( ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
44 |
9 43
|
jaoi |
⊢ ( ( ¬ 𝑅 ∈ Ring ∨ ¬ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
45 |
8 44
|
sylbi |
⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Ring → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
46 |
45
|
com12 |
⊢ ( 𝑅 ∈ Ring → ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
47 |
7 46
|
impbid |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) ) |
48 |
39
|
isnzr2hash |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
49 |
48
|
bicomi |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ 𝑅 ∈ NzRing ) |
50 |
49
|
notbii |
⊢ ( ¬ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ↔ ¬ 𝑅 ∈ NzRing ) |
51 |
47 50
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |