Step |
Hyp |
Ref |
Expression |
1 |
|
0ringsubrg.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringsubrg.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
0ringsubrg.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
4 |
|
0ringsubrg.4 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
5 |
1
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
8 |
1 7
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
9 |
2 3 8
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
10 |
6 9
|
sseqtrd |
⊢ ( 𝜑 → 𝑆 ⊆ { ( 0g ‘ 𝑅 ) } ) |
11 |
|
sssn |
⊢ ( 𝑆 ⊆ { ( 0g ‘ 𝑅 ) } ↔ ( 𝑆 = ∅ ∨ 𝑆 = { ( 0g ‘ 𝑅 ) } ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( 𝑆 = ∅ ∨ 𝑆 = { ( 0g ‘ 𝑅 ) } ) ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
14 |
13
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
16 |
|
n0i |
⊢ ( ( 1r ‘ 𝑅 ) ∈ 𝑆 → ¬ 𝑆 = ∅ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ¬ 𝑆 = ∅ ) |
18 |
12 17
|
orcnd |
⊢ ( 𝜑 → 𝑆 = { ( 0g ‘ 𝑅 ) } ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) ) |
20 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
21 |
|
hashsng |
⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 ) |
22 |
20 21
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 |
23 |
19 22
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = 1 ) |