Step |
Hyp |
Ref |
Expression |
1 |
|
0ringufd.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringufd.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
0ringufd.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
4 |
1 2 3
|
0ringcring |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
eqid |
⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑎 ∈ 𝐵 ) |
10 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( Base ‘ 𝑅 ) ) |
11 |
10 3
|
eqtr3id |
⊢ ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
12 |
|
0ringnnzr |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ¬ 𝑅 ∈ NzRing ) |
14 |
2 11 13
|
syl2anc |
⊢ ( 𝜑 → ¬ 𝑅 ∈ NzRing ) |
15 |
2 14
|
eldifd |
⊢ ( 𝜑 → 𝑅 ∈ ( Ring ∖ NzRing ) ) |
16 |
1 6
|
0ringbas |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐵 = { ( 0g ‘ 𝑅 ) } ) |
19 |
9 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑎 ∈ { ( 0g ‘ 𝑅 ) } ) |
20 |
|
elsni |
⊢ ( 𝑎 ∈ { ( 0g ‘ 𝑅 ) } → 𝑎 = ( 0g ‘ 𝑅 ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑎 = ( 0g ‘ 𝑅 ) ) |
22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑎 ≠ ( 0g ‘ 𝑅 ) ) |
23 |
21 22
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ≠ ( 0g ‘ 𝑅 ) ) |
25 |
5 1 6 7 8 2 24
|
abvtrivd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) ∈ ( AbsVal ‘ 𝑅 ) ) |
26 |
25
|
ne0d |
⊢ ( 𝜑 → ( AbsVal ‘ 𝑅 ) ≠ ∅ ) |
27 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ |
28 |
|
prmidlssidl |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
30 |
1 6
|
0ringidl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
31 |
2 3 30
|
syl2anc |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
32 |
29 31
|
sseqtrd |
⊢ ( 𝜑 → ( PrmIdeal ‘ 𝑅 ) ⊆ { { ( 0g ‘ 𝑅 ) } } ) |
33 |
|
ssdif0 |
⊢ ( ( PrmIdeal ‘ 𝑅 ) ⊆ { { ( 0g ‘ 𝑅 ) } } ↔ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) = ∅ ) |
34 |
32 33
|
sylib |
⊢ ( 𝜑 → ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) = ∅ ) |
35 |
34
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ↔ ∀ 𝑖 ∈ ∅ ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) |
36 |
27 35
|
mpbiri |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) |
37 |
26 36
|
jca |
⊢ ( 𝜑 → ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) |
38 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
39 |
|
eqid |
⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) |
40 |
5 38 39 6
|
isufd |
⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) ) |
41 |
4 37 40
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |