Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
3 |
|
risefallfac |
⊢ ( ( 0 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 0 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) ) |
5 |
|
neg0 |
⊢ - 0 = 0 |
6 |
5
|
oveq1i |
⊢ ( - 0 FallFac 𝑁 ) = ( 0 FallFac 𝑁 ) |
7 |
|
0fallfac |
⊢ ( 𝑁 ∈ ℕ → ( 0 FallFac 𝑁 ) = 0 ) |
8 |
6 7
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ → ( - 0 FallFac 𝑁 ) = 0 ) |
9 |
8
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · 0 ) ) |
10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
11 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
12 |
10 2 11
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
13 |
12
|
mul01d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 𝑁 ) · 0 ) = 0 ) |
14 |
4 9 13
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 0 RiseFac 𝑁 ) = 0 ) |