Metamath Proof Explorer


Theorem 0sdomg

Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion 0sdomg ( 𝐴𝑉 → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 0domg ( 𝐴𝑉 → ∅ ≼ 𝐴 )
2 brsdom ( ∅ ≺ 𝐴 ↔ ( ∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴 ) )
3 2 baib ( ∅ ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) )
4 1 3 syl ( 𝐴𝑉 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) )
5 ensymb ( ∅ ≈ 𝐴𝐴 ≈ ∅ )
6 en0 ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ )
7 5 6 bitri ( ∅ ≈ 𝐴𝐴 = ∅ )
8 7 necon3bbii ( ¬ ∅ ≈ 𝐴𝐴 ≠ ∅ )
9 4 8 bitrdi ( 𝐴𝑉 → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )