| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
⊢ 0 ∈ ℤ |
| 2 |
|
sgmval2 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) |
| 4 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℕ ) |
| 5 |
4
|
nncnd |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℂ ) |
| 6 |
5
|
exp0d |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → ( 𝑘 ↑ 0 ) = 1 ) |
| 7 |
6
|
sumeq2i |
⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 |
| 8 |
|
dvdsfi |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| 9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 10 |
|
fsumconst |
⊢ ( ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
| 12 |
7 11
|
eqtrid |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
| 13 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 14 |
8 13
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 15 |
14
|
nn0cnd |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℂ ) |
| 16 |
15
|
mulridd |
⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |
| 17 |
3 12 16
|
3eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |