Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
4 |
|
0sgm |
⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
6 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 ... 𝐾 ) ∈ Fin ) |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) = ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) |
8 |
7
|
dvdsppwf1o |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑛 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑃 ↑ 𝑛 ) ) : ( 0 ... 𝐾 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) |
9 |
6 8
|
hasheqf1od |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
10 |
5 9
|
eqtr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ ( 0 ... 𝐾 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
12 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
13 |
11 12
|
eleqtrdi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ( ℤ≥ ‘ 0 ) ) |
14 |
|
hashfz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ( 𝐾 − 0 ) + 1 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... 𝐾 ) ) = ( ( 𝐾 − 0 ) + 1 ) ) |
16 |
|
nn0cn |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) |
17 |
16
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℂ ) |
18 |
17
|
subid1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 − 0 ) = 𝐾 ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 − 0 ) + 1 ) = ( 𝐾 + 1 ) ) |
20 |
10 15 19
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0 ) → ( 0 σ ( 𝑃 ↑ 𝐾 ) ) = ( 𝐾 + 1 ) ) |