Metamath Proof Explorer


Theorem 0sn0ep

Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022)

Ref Expression
Assertion 0sn0ep ∅ E { ∅ }

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 snid ∅ ∈ { ∅ }
3 snex { ∅ } ∈ V
4 3 epeli ( ∅ E { ∅ } ↔ ∅ ∈ { ∅ } )
5 2 4 mpbir ∅ E { ∅ }