Step |
Hyp |
Ref |
Expression |
1 |
|
0pth.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
0trl |
⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝐺 ∈ 𝑊 → ( ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) ) |
4 |
|
isspth |
⊢ ( ∅ ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
5 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
6 |
5
|
feq2i |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ 𝑃 : { 0 } ⟶ 𝑉 ) |
7 |
|
c0ex |
⊢ 0 ∈ V |
8 |
7
|
fsn2 |
⊢ ( 𝑃 : { 0 } ⟶ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) ) |
9 |
|
funcnvsn |
⊢ Fun ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } |
10 |
|
cnveq |
⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → ◡ 𝑃 = ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) |
11 |
10
|
funeqd |
⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → ( Fun ◡ 𝑃 ↔ Fun ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) ) |
12 |
9 11
|
mpbiri |
⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → Fun ◡ 𝑃 ) |
13 |
8 12
|
simplbiim |
⊢ ( 𝑃 : { 0 } ⟶ 𝑉 → Fun ◡ 𝑃 ) |
14 |
6 13
|
sylbi |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → Fun ◡ 𝑃 ) |
15 |
14
|
pm4.71i |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) |
16 |
3 4 15
|
3bitr4g |
⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( SPaths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |