Metamath Proof Explorer


Theorem 0ssc

Description: For any category C , the empty set is a subcategory subset of C . (Contributed by AV, 23-Apr-2020)

Ref Expression
Assertion 0ssc ( 𝐶 ∈ Cat → ∅ ⊆cat ( Homf𝐶 ) )

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ ( Base ‘ 𝐶 )
2 1 a1i ( 𝐶 ∈ Cat → ∅ ⊆ ( Base ‘ 𝐶 ) )
3 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥𝑦 ) ⊆ ( 𝑥 ( Homf𝐶 ) 𝑦 )
4 3 a1i ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥𝑦 ) ⊆ ( 𝑥 ( Homf𝐶 ) 𝑦 ) )
5 f0 ∅ : ∅ ⟶ ∅
6 ffn ( ∅ : ∅ ⟶ ∅ → ∅ Fn ∅ )
7 5 6 ax-mp ∅ Fn ∅
8 xp0 ( ∅ × ∅ ) = ∅
9 8 fneq2i ( ∅ Fn ( ∅ × ∅ ) ↔ ∅ Fn ∅ )
10 7 9 mpbir ∅ Fn ( ∅ × ∅ )
11 10 a1i ( 𝐶 ∈ Cat → ∅ Fn ( ∅ × ∅ ) )
12 eqid ( Homf𝐶 ) = ( Homf𝐶 )
13 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
14 12 13 homffn ( Homf𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) )
15 14 a1i ( 𝐶 ∈ Cat → ( Homf𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
16 fvexd ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) ∈ V )
17 11 15 16 isssc ( 𝐶 ∈ Cat → ( ∅ ⊆cat ( Homf𝐶 ) ↔ ( ∅ ⊆ ( Base ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥𝑦 ) ⊆ ( 𝑥 ( Homf𝐶 ) 𝑦 ) ) ) )
18 2 4 17 mpbir2and ( 𝐶 ∈ Cat → ∅ ⊆cat ( Homf𝐶 ) )