Metamath Proof Explorer


Theorem 0subg

Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014)

Ref Expression
Hypothesis 0subg.z 0 = ( 0g𝐺 )
Assertion 0subg ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 0subg.z 0 = ( 0g𝐺 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 2 1 grpidcl ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) )
4 3 snssd ( 𝐺 ∈ Grp → { 0 } ⊆ ( Base ‘ 𝐺 ) )
5 1 fvexi 0 ∈ V
6 5 snnz { 0 } ≠ ∅
7 6 a1i ( 𝐺 ∈ Grp → { 0 } ≠ ∅ )
8 eqid ( +g𝐺 ) = ( +g𝐺 )
9 2 8 1 grplid ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g𝐺 ) 0 ) = 0 )
10 3 9 mpdan ( 𝐺 ∈ Grp → ( 0 ( +g𝐺 ) 0 ) = 0 )
11 ovex ( 0 ( +g𝐺 ) 0 ) ∈ V
12 11 elsn ( ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } ↔ ( 0 ( +g𝐺 ) 0 ) = 0 )
13 10 12 sylibr ( 𝐺 ∈ Grp → ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } )
14 eqid ( invg𝐺 ) = ( invg𝐺 )
15 1 14 grpinvid ( 𝐺 ∈ Grp → ( ( invg𝐺 ) ‘ 0 ) = 0 )
16 fvex ( ( invg𝐺 ) ‘ 0 ) ∈ V
17 16 elsn ( ( ( invg𝐺 ) ‘ 0 ) ∈ { 0 } ↔ ( ( invg𝐺 ) ‘ 0 ) = 0 )
18 15 17 sylibr ( 𝐺 ∈ Grp → ( ( invg𝐺 ) ‘ 0 ) ∈ { 0 } )
19 oveq1 ( 𝑎 = 0 → ( 𝑎 ( +g𝐺 ) 𝑏 ) = ( 0 ( +g𝐺 ) 𝑏 ) )
20 19 eleq1d ( 𝑎 = 0 → ( ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ) )
21 20 ralbidv ( 𝑎 = 0 → ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ↔ ∀ 𝑏 ∈ { 0 } ( 0 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ) )
22 oveq2 ( 𝑏 = 0 → ( 0 ( +g𝐺 ) 𝑏 ) = ( 0 ( +g𝐺 ) 0 ) )
23 22 eleq1d ( 𝑏 = 0 → ( ( 0 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } ) )
24 5 23 ralsn ( ∀ 𝑏 ∈ { 0 } ( 0 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } )
25 21 24 bitrdi ( 𝑎 = 0 → ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } ) )
26 fveq2 ( 𝑎 = 0 → ( ( invg𝐺 ) ‘ 𝑎 ) = ( ( invg𝐺 ) ‘ 0 ) )
27 26 eleq1d ( 𝑎 = 0 → ( ( ( invg𝐺 ) ‘ 𝑎 ) ∈ { 0 } ↔ ( ( invg𝐺 ) ‘ 0 ) ∈ { 0 } ) )
28 25 27 anbi12d ( 𝑎 = 0 → ( ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ↔ ( ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 0 ) ∈ { 0 } ) ) )
29 5 28 ralsn ( ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ↔ ( ( 0 ( +g𝐺 ) 0 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 0 ) ∈ { 0 } ) )
30 13 18 29 sylanbrc ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) )
31 2 8 14 issubg2 ( 𝐺 ∈ Grp → ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 0 } ⊆ ( Base ‘ 𝐺 ) ∧ { 0 } ≠ ∅ ∧ ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ) ) )
32 4 7 30 31 mpbir3and ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) )