Step |
Hyp |
Ref |
Expression |
1 |
|
0subg.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
2 1
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
4 |
3
|
snssd |
⊢ ( 𝐺 ∈ Grp → { 0 } ⊆ ( Base ‘ 𝐺 ) ) |
5 |
1
|
fvexi |
⊢ 0 ∈ V |
6 |
5
|
snnz |
⊢ { 0 } ≠ ∅ |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ Grp → { 0 } ≠ ∅ ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
9 |
2 8 1
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
10 |
3 9
|
mpdan |
⊢ ( 𝐺 ∈ Grp → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
11 |
|
ovex |
⊢ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ V |
12 |
11
|
elsn |
⊢ ( ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
13 |
10 12
|
sylibr |
⊢ ( 𝐺 ∈ Grp → ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) |
14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
15 |
1 14
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
16 |
|
fvex |
⊢ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ V |
17 |
16
|
elsn |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ↔ ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
18 |
15 17
|
sylibr |
⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) |
19 |
|
oveq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 0 ( +g ‘ 𝐺 ) 𝑏 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑎 = 0 → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑎 = 0 → ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ∀ 𝑏 ∈ { 0 } ( 0 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ) ) |
22 |
|
oveq2 |
⊢ ( 𝑏 = 0 → ( 0 ( +g ‘ 𝐺 ) 𝑏 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑏 = 0 → ( ( 0 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) ) |
24 |
5 23
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { 0 } ( 0 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) |
25 |
21 24
|
bitrdi |
⊢ ( 𝑎 = 0 → ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ) ) |
26 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑎 = 0 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ↔ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) ) |
28 |
25 27
|
anbi12d |
⊢ ( 𝑎 = 0 → ( ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ↔ ( ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) ) ) |
29 |
5 28
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ↔ ( ( 0 ( +g ‘ 𝐺 ) 0 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) ) |
30 |
13 18 29
|
sylanbrc |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ) |
31 |
2 8 14
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 0 } ⊆ ( Base ‘ 𝐺 ) ∧ { 0 } ≠ ∅ ∧ ∀ 𝑎 ∈ { 0 } ( ∀ 𝑏 ∈ { 0 } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ { 0 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ) ) ) |
32 |
4 7 30 31
|
mpbir3and |
⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |