| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subg.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 2 1 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 4 | 3 | snssd | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 5 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 6 | 5 | snnz | ⊢ {  0  }  ≠  ∅ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ≠  ∅ ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 9 | 2 8 1 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧   0   ∈  ( Base ‘ 𝐺 ) )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 10 | 3 9 | mpdan | ⊢ ( 𝐺  ∈  Grp  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 11 |  | ovex | ⊢ (  0  ( +g ‘ 𝐺 )  0  )  ∈  V | 
						
							| 12 | 11 | elsn | ⊢ ( (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( 𝐺  ∈  Grp  →  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) | 
						
							| 14 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 15 | 1 14 | grpinvid | ⊢ ( 𝐺  ∈  Grp  →  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 16 |  | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  V | 
						
							| 17 | 16 | elsn | ⊢ ( ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  {  0  }  ↔  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 18 | 15 17 | sylibr | ⊢ ( 𝐺  ∈  Grp  →  ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  {  0  } ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑎  =   0   →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  =  (  0  ( +g ‘ 𝐺 ) 𝑏 ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑎  =   0   →  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑎  =   0   →  ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  ∀ 𝑏  ∈  {  0  } (  0  ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑏  =   0   →  (  0  ( +g ‘ 𝐺 ) 𝑏 )  =  (  0  ( +g ‘ 𝐺 )  0  ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑏  =   0   →  ( (  0  ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) ) | 
						
							| 24 | 5 23 | ralsn | ⊢ ( ∀ 𝑏  ∈  {  0  } (  0  ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) | 
						
							| 25 | 21 24 | bitrdi | ⊢ ( 𝑎  =   0   →  ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑎  =   0   →  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  =  ( ( invg ‘ 𝐺 ) ‘  0  ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑎  =   0   →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  {  0  }  ↔  ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  {  0  } ) ) | 
						
							| 28 | 25 27 | anbi12d | ⊢ ( 𝑎  =   0   →  ( ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  {  0  } )  ↔  ( (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  {  0  } ) ) ) | 
						
							| 29 | 5 28 | ralsn | ⊢ ( ∀ 𝑎  ∈  {  0  } ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  {  0  } )  ↔  ( (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘  0  )  ∈  {  0  } ) ) | 
						
							| 30 | 13 18 29 | sylanbrc | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑎  ∈  {  0  } ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  {  0  } ) ) | 
						
							| 31 | 2 8 14 | issubg2 | ⊢ ( 𝐺  ∈  Grp  →  ( {  0  }  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( {  0  }  ⊆  ( Base ‘ 𝐺 )  ∧  {  0  }  ≠  ∅  ∧  ∀ 𝑎  ∈  {  0  } ( ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  {  0  } ) ) ) ) | 
						
							| 32 | 4 7 30 31 | mpbir3and | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) ) |