| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subm.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 2 1 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 4 | 3 | snssd | ⊢ ( 𝐺  ∈  Mnd  →  {  0  }  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 5 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 6 | 5 | snid | ⊢  0   ∈  {  0  } | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  {  0  } ) | 
						
							| 8 |  | velsn | ⊢ ( 𝑎  ∈  {  0  }  ↔  𝑎  =   0  ) | 
						
							| 9 |  | velsn | ⊢ ( 𝑏  ∈  {  0  }  ↔  𝑏  =   0  ) | 
						
							| 10 | 8 9 | anbi12i | ⊢ ( ( 𝑎  ∈  {  0  }  ∧  𝑏  ∈  {  0  } )  ↔  ( 𝑎  =   0   ∧  𝑏  =   0  ) ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 12 | 2 11 1 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧   0   ∈  ( Base ‘ 𝐺 ) )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 13 | 3 12 | mpdan | ⊢ ( 𝐺  ∈  Mnd  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 14 |  | ovex | ⊢ (  0  ( +g ‘ 𝐺 )  0  )  ∈  V | 
						
							| 15 | 14 | elsn | ⊢ ( (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 16 | 13 15 | sylibr | ⊢ ( 𝐺  ∈  Mnd  →  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) | 
						
							| 17 |  | oveq12 | ⊢ ( ( 𝑎  =   0   ∧  𝑏  =   0  )  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  =  (  0  ( +g ‘ 𝐺 )  0  ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( ( 𝑎  =   0   ∧  𝑏  =   0  )  →  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  }  ↔  (  0  ( +g ‘ 𝐺 )  0  )  ∈  {  0  } ) ) | 
						
							| 19 | 16 18 | syl5ibrcom | ⊢ ( 𝐺  ∈  Mnd  →  ( ( 𝑎  =   0   ∧  𝑏  =   0  )  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) ) | 
						
							| 20 | 10 19 | biimtrid | ⊢ ( 𝐺  ∈  Mnd  →  ( ( 𝑎  ∈  {  0  }  ∧  𝑏  ∈  {  0  } )  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) ) | 
						
							| 21 | 20 | ralrimivv | ⊢ ( 𝐺  ∈  Mnd  →  ∀ 𝑎  ∈  {  0  } ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) | 
						
							| 22 | 2 1 11 | issubm | ⊢ ( 𝐺  ∈  Mnd  →  ( {  0  }  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( {  0  }  ⊆  ( Base ‘ 𝐺 )  ∧   0   ∈  {  0  }  ∧  ∀ 𝑎  ∈  {  0  } ∀ 𝑏  ∈  {  0  } ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  ∈  {  0  } ) ) ) | 
						
							| 23 | 4 7 21 22 | mpbir3and | ⊢ ( 𝐺  ∈  Mnd  →  {  0  }  ∈  ( SubMnd ‘ 𝐺 ) ) |