| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc | ⊢ ( 𝐽  =  { ∅ }  →  ( 𝐽  =  ∅  ∨  𝐽  =  { ∅ } ) ) | 
						
							| 2 |  | 0opn | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  𝐽 ) | 
						
							| 3 |  | n0i | ⊢ ( ∅  ∈  𝐽  →  ¬  𝐽  =  ∅ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐽  ∈  Top  →  ¬  𝐽  =  ∅ ) | 
						
							| 5 | 4 | pm2.21d | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  =  ∅  →  𝐽  =  { ∅ } ) ) | 
						
							| 6 |  | idd | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  =  { ∅ }  →  𝐽  =  { ∅ } ) ) | 
						
							| 7 | 5 6 | jaod | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝐽  =  ∅  ∨  𝐽  =  { ∅ } )  →  𝐽  =  { ∅ } ) ) | 
						
							| 8 | 1 7 | impbid2 | ⊢ ( 𝐽  ∈  Top  →  ( 𝐽  =  { ∅ }  ↔  ( 𝐽  =  ∅  ∨  𝐽  =  { ∅ } ) ) ) | 
						
							| 9 |  | uni0b | ⊢ ( ∪  𝐽  =  ∅  ↔  𝐽  ⊆  { ∅ } ) | 
						
							| 10 |  | sssn | ⊢ ( 𝐽  ⊆  { ∅ }  ↔  ( 𝐽  =  ∅  ∨  𝐽  =  { ∅ } ) ) | 
						
							| 11 | 9 10 | bitr2i | ⊢ ( ( 𝐽  =  ∅  ∨  𝐽  =  { ∅ } )  ↔  ∪  𝐽  =  ∅ ) | 
						
							| 12 | 8 11 | bitr2di | ⊢ ( 𝐽  ∈  Top  →  ( ∪  𝐽  =  ∅  ↔  𝐽  =  { ∅ } ) ) |