Metamath Proof Explorer


Theorem 0top

Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006)

Ref Expression
Assertion 0top ( 𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) )

Proof

Step Hyp Ref Expression
1 olc ( 𝐽 = { ∅ } → ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) )
2 0opn ( 𝐽 ∈ Top → ∅ ∈ 𝐽 )
3 n0i ( ∅ ∈ 𝐽 → ¬ 𝐽 = ∅ )
4 2 3 syl ( 𝐽 ∈ Top → ¬ 𝐽 = ∅ )
5 4 pm2.21d ( 𝐽 ∈ Top → ( 𝐽 = ∅ → 𝐽 = { ∅ } ) )
6 idd ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } → 𝐽 = { ∅ } ) )
7 5 6 jaod ( 𝐽 ∈ Top → ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) → 𝐽 = { ∅ } ) )
8 1 7 impbid2 ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) )
9 uni0b ( 𝐽 = ∅ ↔ 𝐽 ⊆ { ∅ } )
10 sssn ( 𝐽 ⊆ { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) )
11 9 10 bitr2i ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ↔ 𝐽 = ∅ )
12 8 11 bitr2di ( 𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) )