Step |
Hyp |
Ref |
Expression |
1 |
|
olc |
⊢ ( 𝐽 = { ∅ } → ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) |
2 |
|
0opn |
⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) |
3 |
|
n0i |
⊢ ( ∅ ∈ 𝐽 → ¬ 𝐽 = ∅ ) |
4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ Top → ¬ 𝐽 = ∅ ) |
5 |
4
|
pm2.21d |
⊢ ( 𝐽 ∈ Top → ( 𝐽 = ∅ → 𝐽 = { ∅ } ) ) |
6 |
|
idd |
⊢ ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } → 𝐽 = { ∅ } ) ) |
7 |
5 6
|
jaod |
⊢ ( 𝐽 ∈ Top → ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) → 𝐽 = { ∅ } ) ) |
8 |
1 7
|
impbid2 |
⊢ ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) ) |
9 |
|
uni0b |
⊢ ( ∪ 𝐽 = ∅ ↔ 𝐽 ⊆ { ∅ } ) |
10 |
|
sssn |
⊢ ( 𝐽 ⊆ { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) |
11 |
9 10
|
bitr2i |
⊢ ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ↔ ∪ 𝐽 = ∅ ) |
12 |
8 11
|
bitr2di |
⊢ ( 𝐽 ∈ Top → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |