Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( TotBnd ‘ 𝑋 ) = ( TotBnd ‘ ∅ ) ) |
2 |
1
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ ( TotBnd ‘ ∅ ) ) ) |
3 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ∅ |
4 |
|
0fin |
⊢ ∅ ∈ Fin |
5 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) ) |
6 |
3 4 5
|
mpbir2an |
⊢ ∅ ∈ ( 𝒫 ∅ ∩ Fin ) |
7 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ |
8 |
|
iuneq1 |
⊢ ( 𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑣 = ∅ → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ↔ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) ) |
10 |
9
|
rspcev |
⊢ ( ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ∧ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) → ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) |
11 |
6 7 10
|
mp2an |
⊢ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ |
12 |
11
|
rgenw |
⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ |
13 |
|
istotbnd3 |
⊢ ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ ( 𝑀 ∈ ( Met ‘ ∅ ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) ) |
14 |
12 13
|
mpbiran2 |
⊢ ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ 𝑀 ∈ ( Met ‘ ∅ ) ) |
15 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( Met ‘ 𝑋 ) = ( Met ‘ ∅ ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ 𝑀 ∈ ( Met ‘ ∅ ) ) ) |
17 |
14 16
|
bitr4id |
⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |
18 |
2 17
|
bitrd |
⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |