| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | 0wlkon | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 4 | 1 | 0wlkonlem1 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) | 
						
							| 5 | 1 | 1vgrex | ⊢ ( 𝑁  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 7 | 1 | 0trl | ⊢ ( 𝐺  ∈  V  →  ( ∅ ( Trails ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 8 | 4 6 7 | 3syl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( ∅ ( Trails ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 9 | 3 8 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅ ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅  ∈  V ) | 
						
							| 12 | 1 | 0wlkonlem2 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) | 
						
							| 13 | 1 | istrlson | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  ∧  ( ∅  ∈  V  ∧  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) )  →  ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃  ↔  ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃  ∧  ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 14 | 4 11 12 13 | syl12anc | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃  ↔  ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃  ∧  ∅ ( Trails ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 15 | 2 9 14 | mpbir2and | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅ ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |