| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) |
| 2 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
enref |
⊢ ∅ ≈ ∅ |
| 5 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ↔ ∅ ≈ ∅ ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝑥 ≈ ∅ ) |
| 7 |
6
|
orcd |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝑥 ∈ { ∅ } → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 9 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 10 |
8 9
|
eleq2s |
⊢ ( 𝑥 ∈ 𝒫 ∅ → ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) |
| 12 |
|
eltsk2g |
⊢ ( ∅ ∈ V → ( ∅ ∈ Tarski ↔ ( ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) ∧ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) ) ) |
| 13 |
3 12
|
ax-mp |
⊢ ( ∅ ∈ Tarski ↔ ( ∀ 𝑥 ∈ ∅ ( 𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅ ) ∧ ∀ 𝑥 ∈ 𝒫 ∅ ( 𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅ ) ) ) |
| 14 |
1 11 13
|
mpbir2an |
⊢ ∅ ∈ Tarski |