| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0unit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
0unit.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
0unit.3 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 6 |
1 4 5 3
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 1 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
1 4 7
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 |
7 5 2
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 0 ) |
| 10 |
8 9
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 0 ) |
| 11 |
6 10
|
eqtr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → 1 = 0 ) |
| 12 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 ) |
| 13 |
1 3
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1 ∈ 𝑈 ) |
| 15 |
12 14
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 0 ∈ 𝑈 ) |
| 16 |
11 15
|
impbida |
⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 ) ) |