Metamath Proof Explorer


Theorem 0unit

Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses 0unit.1 𝑈 = ( Unit ‘ 𝑅 )
0unit.2 0 = ( 0g𝑅 )
0unit.3 1 = ( 1r𝑅 )
Assertion 0unit ( 𝑅 ∈ Ring → ( 0𝑈1 = 0 ) )

Proof

Step Hyp Ref Expression
1 0unit.1 𝑈 = ( Unit ‘ 𝑅 )
2 0unit.2 0 = ( 0g𝑅 )
3 0unit.3 1 = ( 1r𝑅 )
4 eqid ( invr𝑅 ) = ( invr𝑅 )
5 eqid ( .r𝑅 ) = ( .r𝑅 )
6 1 4 5 3 unitrinv ( ( 𝑅 ∈ Ring ∧ 0𝑈 ) → ( 0 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 0 ) ) = 1 )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 1 4 7 ringinvcl ( ( 𝑅 ∈ Ring ∧ 0𝑈 ) → ( ( invr𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) )
9 7 5 2 ringlz ( ( 𝑅 ∈ Ring ∧ ( ( invr𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 0 ) ) = 0 )
10 8 9 syldan ( ( 𝑅 ∈ Ring ∧ 0𝑈 ) → ( 0 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 0 ) ) = 0 )
11 6 10 eqtr3d ( ( 𝑅 ∈ Ring ∧ 0𝑈 ) → 1 = 0 )
12 simpr ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 )
13 1 3 1unit ( 𝑅 ∈ Ring → 1𝑈 )
14 13 adantr ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1𝑈 )
15 12 14 eqeltrrd ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 0𝑈 )
16 11 15 impbida ( 𝑅 ∈ Ring → ( 0𝑈1 = 0 ) )