| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝑘 ∈ ℕ0* ) |
| 2 |
|
rzal |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) |
| 3 |
2
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) |
| 4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
| 6 |
4 5
|
isrgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegGraph 𝑘 ↔ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) ) ) |
| 7 |
6
|
adantlr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegGraph 𝑘 ↔ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) ) ) |
| 8 |
1 3 7
|
mpbir2and |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegGraph 𝑘 ) |
| 9 |
8
|
ralrimiva |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘 ) |