Metamath Proof Explorer


Theorem 0vtxrgr

Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrgr ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘 )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝑘 ∈ ℕ0* )
2 rzal ( ( Vtx ‘ 𝐺 ) = ∅ → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 )
3 2 ad2antlr ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 )
4 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
5 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
6 4 5 isrgr ( ( 𝐺𝑊𝑘 ∈ ℕ0* ) → ( 𝐺 RegGraph 𝑘 ↔ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) ) )
7 6 adantlr ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegGraph 𝑘 ↔ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) ) )
8 1 3 7 mpbir2and ( ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegGraph 𝑘 )
9 8 ralrimiva ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘 )