Step |
Hyp |
Ref |
Expression |
1 |
|
usgr0v |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 ∈ USGraph ) |
3 |
|
0vtxrgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 ) |
4 |
|
breq2 |
⊢ ( 𝑣 = 𝑘 → ( 𝐺 RegGraph 𝑣 ↔ 𝐺 RegGraph 𝑘 ) ) |
5 |
4
|
rspccv |
⊢ ( ∀ 𝑣 ∈ ℕ0* 𝐺 RegGraph 𝑣 → ( 𝑘 ∈ ℕ0* → 𝐺 RegGraph 𝑘 ) ) |
6 |
3 5
|
syl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝑘 ∈ ℕ0* → 𝐺 RegGraph 𝑘 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 𝑘 ∈ ℕ0* → 𝐺 RegGraph 𝑘 ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegGraph 𝑘 ) |
9 |
|
isrusgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegUSGraph 𝑘 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘 ) ) ) |
10 |
9
|
3ad2antl1 |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → ( 𝐺 RegUSGraph 𝑘 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝑘 ) ) ) |
11 |
2 8 10
|
mpbir2and |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑘 ∈ ℕ0* ) → 𝐺 RegUSGraph 𝑘 ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘 ) |