Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0we1 | ⊢ ∅ We 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 | ⊢ ¬ ∅ ∅ ∅ | |
| 2 | rel0 | ⊢ Rel ∅ | |
| 3 | wesn | ⊢ ( Rel ∅ → ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ ) |
| 5 | 1 4 | mpbir | ⊢ ∅ We { ∅ } |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | weeq2 | ⊢ ( 1o = { ∅ } → ( ∅ We 1o ↔ ∅ We { ∅ } ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ∅ We 1o ↔ ∅ We { ∅ } ) |
| 9 | 5 8 | mpbir | ⊢ ∅ We 1o |