Metamath Proof Explorer


Theorem 0we1

Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion 0we1 ∅ We 1o

Proof

Step Hyp Ref Expression
1 br0 ¬ ∅ ∅ ∅
2 rel0 Rel ∅
3 wesn ( Rel ∅ → ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ ) )
4 2 3 ax-mp ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ )
5 1 4 mpbir ∅ We { ∅ }
6 df1o2 1o = { ∅ }
7 weeq2 ( 1o = { ∅ } → ( ∅ We 1o ↔ ∅ We { ∅ } ) )
8 6 7 ax-mp ( ∅ We 1o ↔ ∅ We { ∅ } )
9 5 8 mpbir ∅ We 1o