Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 0we1 | ⊢ ∅ We 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 | ⊢ ¬ ∅ ∅ ∅ | |
2 | rel0 | ⊢ Rel ∅ | |
3 | wesn | ⊢ ( Rel ∅ → ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ ) ) | |
4 | 2 3 | ax-mp | ⊢ ( ∅ We { ∅ } ↔ ¬ ∅ ∅ ∅ ) |
5 | 1 4 | mpbir | ⊢ ∅ We { ∅ } |
6 | df1o2 | ⊢ 1o = { ∅ } | |
7 | weeq2 | ⊢ ( 1o = { ∅ } → ( ∅ We 1o ↔ ∅ We { ∅ } ) ) | |
8 | 6 7 | ax-mp | ⊢ ( ∅ We 1o ↔ ∅ We { ∅ } ) |
9 | 5 8 | mpbir | ⊢ ∅ We 1o |