Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
iswlkg |
⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) |
4 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) |
5 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
6 |
5
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ( 0 ..^ 0 ) |
7 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
8 |
6 7
|
eqtri |
⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
9 |
8
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ∅ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) |
10 |
4 9
|
mpbir |
⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) |
11 |
10
|
biantru |
⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ↔ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) |
12 |
5
|
eqcomi |
⊢ 0 = ( ♯ ‘ ∅ ) |
13 |
12
|
oveq2i |
⊢ ( 0 ... 0 ) = ( 0 ... ( ♯ ‘ ∅ ) ) |
14 |
13
|
feq2i |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) |
15 |
|
wrd0 |
⊢ ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) |
16 |
15
|
biantrur |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) |
17 |
14 16
|
bitri |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) |
18 |
|
df-3an |
⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) |
19 |
11 17 18
|
3bitr4ri |
⊢ ( ( ∅ ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
20 |
3 19
|
bitrdi |
⊢ ( 𝐺 ∈ 𝑈 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |