| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | iswlkg | ⊢ ( 𝐺  ∈  𝑈  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 4 |  | ral0 | ⊢ ∀ 𝑘  ∈  ∅ if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) | 
						
							| 5 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 6 | 5 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) )  =  ( 0 ..^ 0 ) | 
						
							| 7 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 8 | 6 7 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) )  =  ∅ | 
						
							| 9 | 8 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) )  ↔  ∀ 𝑘  ∈  ∅ if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) | 
						
							| 10 | 4 9 | mpbir | ⊢ ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) | 
						
							| 11 | 10 | biantru | ⊢ ( ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 )  ↔  ( ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) | 
						
							| 12 | 5 | eqcomi | ⊢ 0  =  ( ♯ ‘ ∅ ) | 
						
							| 13 | 12 | oveq2i | ⊢ ( 0 ... 0 )  =  ( 0 ... ( ♯ ‘ ∅ ) ) | 
						
							| 14 | 13 | feq2i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ↔  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) | 
						
							| 15 |  | wrd0 | ⊢ ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 16 | 15 | biantrur | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉  ↔  ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) | 
						
							| 17 | 14 16 | bitri | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ↔  ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 ) ) | 
						
							| 18 |  | df-3an | ⊢ ( ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) )  ↔  ( ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) ) ) | 
						
							| 19 | 11 17 18 | 3bitr4ri | ⊢ ( ( ∅  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ ∅ ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ∅ ‘ 𝑘 ) ) ) )  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 20 | 3 19 | bitrdi | ⊢ ( 𝐺  ∈  𝑈  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |