Metamath Proof Explorer


Theorem 0wlkon

Description: A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0wlk.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion 0wlkon ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 0wlk.v 𝑉 = ( Vtx ‘ 𝐺 )
2 simpl ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 )
3 1 0wlkonlem1 ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁𝑉𝑁𝑉 ) )
4 1 1vgrex ( 𝑁𝑉𝐺 ∈ V )
5 4 adantr ( ( 𝑁𝑉𝑁𝑉 ) → 𝐺 ∈ V )
6 1 0wlk ( 𝐺 ∈ V → ( ∅ ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) )
7 3 5 6 3syl ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) )
8 2 7 mpbird ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( Walks ‘ 𝐺 ) 𝑃 )
9 simpr ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ 0 ) = 𝑁 )
10 hash0 ( ♯ ‘ ∅ ) = 0
11 10 fveq2i ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = ( 𝑃 ‘ 0 )
12 11 9 syl5eq ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 )
13 0ex ∅ ∈ V
14 13 a1i ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ∈ V )
15 1 0wlkonlem2 ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉pm ( 0 ... 0 ) ) )
16 1 iswlkon ( ( ( 𝑁𝑉𝑁𝑉 ) ∧ ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉pm ( 0 ... 0 ) ) ) ) → ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ∧ ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 ) ) )
17 3 14 15 16 syl12anc ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ∧ ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 ) ) )
18 8 9 12 17 mpbir3and ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 )