| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 3 | 1 | 0wlkonlem1 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) | 
						
							| 4 | 1 | 1vgrex | ⊢ ( 𝑁  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 6 | 1 | 0wlk | ⊢ ( 𝐺  ∈  V  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 7 | 3 5 6 | 3syl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 8 | 2 7 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅ ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑃 ‘ 0 )  =  𝑁 ) | 
						
							| 10 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 11 | 10 | fveq2i | ⊢ ( 𝑃 ‘ ( ♯ ‘ ∅ ) )  =  ( 𝑃 ‘ 0 ) | 
						
							| 12 | 11 9 | eqtrid | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑃 ‘ ( ♯ ‘ ∅ ) )  =  𝑁 ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅  ∈  V ) | 
						
							| 15 | 1 | 0wlkonlem2 | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) | 
						
							| 16 | 1 | iswlkon | ⊢ ( ( ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  ∧  ( ∅  ∈  V  ∧  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) )  →  ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃  ↔  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝑁  ∧  ( 𝑃 ‘ ( ♯ ‘ ∅ ) )  =  𝑁 ) ) ) | 
						
							| 17 | 3 14 15 16 | syl12anc | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃  ↔  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝑁  ∧  ( 𝑃 ‘ ( ♯ ‘ ∅ ) )  =  𝑁 ) ) ) | 
						
							| 18 | 8 9 12 17 | mpbir3and | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |