Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
simpl |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
3 |
1
|
0wlkonlem1 |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
4 |
1
|
1vgrex |
⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ V ) |
6 |
1
|
0wlk |
⊢ ( 𝐺 ∈ V → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
7 |
3 5 6
|
3syl |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
8 |
2 7
|
mpbird |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
simpr |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ 0 ) = 𝑁 ) |
10 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
11 |
10
|
fveq2i |
⊢ ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = ( 𝑃 ‘ 0 ) |
12 |
11 9
|
syl5eq |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ∈ V ) |
15 |
1
|
0wlkonlem2 |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) |
16 |
1
|
iswlkon |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( ∅ ∈ V ∧ 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... 0 ) ) ) ) → ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ∧ ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 ) ) ) |
17 |
3 14 15 16
|
syl12anc |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ∧ ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) = 𝑁 ) ) ) |
18 |
8 9 12 17
|
mpbir3and |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ∅ ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑁 ) 𝑃 ) |