| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | id | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  →  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 |  | 0elfz | ⊢ ( 0  ∈  ℕ0  →  0  ∈  ( 0 ... 0 ) ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  →  0  ∈  ( 0 ... 0 ) ) | 
						
							| 6 | 2 5 | ffvelcdmd | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑁  =  ( 𝑃 ‘ 0 )  →  ( 𝑁  ∈  𝑉  ↔  ( 𝑃 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( ( 𝑃 ‘ 0 )  =  𝑁  →  ( 𝑁  ∈  𝑉  ↔  ( 𝑃 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑁  ∈  𝑉  ↔  ( 𝑃 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 11 | 7 10 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑁  ∈  𝑉 ) | 
						
							| 12 |  | id | ⊢ ( 𝑁  ∈  𝑉  →  𝑁  ∈  𝑉 ) | 
						
							| 13 | 11 12 | jccir | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  ( 𝑁  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) |