Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
id |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
0elfz |
⊢ ( 0 ∈ ℕ0 → 0 ∈ ( 0 ... 0 ) ) |
5 |
3 4
|
mp1i |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → 0 ∈ ( 0 ... 0 ) ) |
6 |
2 5
|
ffvelrnd |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
8 |
|
eleq1 |
⊢ ( 𝑁 = ( 𝑃 ‘ 0 ) → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
9 |
8
|
eqcoms |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑁 → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
11 |
7 10
|
mpbird |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑁 ∈ 𝑉 ) |
12 |
|
id |
⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) |
13 |
11 12
|
jccir |
⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |