Metamath Proof Explorer
		
		
		
		Description:  Lemma 2 for 0wlkon and 0trlon .  (Contributed by AV, 3-Jan-2021)
       (Revised by AV, 23-Mar-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
				
					|  | Assertion | 0wlkonlem2 | ⊢  ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | ovex | ⊢ ( 0 ... 0 )  ∈  V | 
						
							| 3 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 5 |  | fpmg | ⊢ ( ( ( 0 ... 0 )  ∈  V  ∧  𝑉  ∈  V  ∧  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 )  →  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) | 
						
							| 6 | 2 3 4 5 | mp3an12i | ⊢ ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 )  →  𝑃  ∈  ( 𝑉  ↑pm  ( 0 ... 0 ) ) ) |