Metamath Proof Explorer


Theorem 0wlkonlem2

Description: Lemma 2 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis 0wlk.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion 0wlkonlem2 ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉pm ( 0 ... 0 ) ) )

Proof

Step Hyp Ref Expression
1 0wlk.v 𝑉 = ( Vtx ‘ 𝐺 )
2 ovex ( 0 ... 0 ) ∈ V
3 1 fvexi 𝑉 ∈ V
4 simpl ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 )
5 fpmg ( ( ( 0 ... 0 ) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) → 𝑃 ∈ ( 𝑉pm ( 0 ... 0 ) ) )
6 2 3 4 5 mp3an12i ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) → 𝑃 ∈ ( 𝑉pm ( 0 ... 0 ) ) )