Description: The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 0wrd0 | ⊢ ( 𝑊 ∈ Word ∅ ↔ 𝑊 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdf | ⊢ ( 𝑊 ∈ Word ∅ → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ ) | |
2 | f00 | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ ↔ ( 𝑊 = ∅ ∧ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) ) | |
3 | 2 | simplbi | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ → 𝑊 = ∅ ) |
4 | 1 3 | syl | ⊢ ( 𝑊 ∈ Word ∅ → 𝑊 = ∅ ) |
5 | wrd0 | ⊢ ∅ ∈ Word ∅ | |
6 | eleq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 ∈ Word ∅ ↔ ∅ ∈ Word ∅ ) ) | |
7 | 5 6 | mpbiri | ⊢ ( 𝑊 = ∅ → 𝑊 ∈ Word ∅ ) |
8 | 4 7 | impbii | ⊢ ( 𝑊 ∈ Word ∅ ↔ 𝑊 = ∅ ) |