Metamath Proof Explorer


Theorem 0wrd0

Description: The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018)

Ref Expression
Assertion 0wrd0 ( 𝑊 ∈ Word ∅ ↔ 𝑊 = ∅ )

Proof

Step Hyp Ref Expression
1 wrdf ( 𝑊 ∈ Word ∅ → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ )
2 f00 ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ ↔ ( 𝑊 = ∅ ∧ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) )
3 2 simplbi ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ∅ → 𝑊 = ∅ )
4 1 3 syl ( 𝑊 ∈ Word ∅ → 𝑊 = ∅ )
5 wrd0 ∅ ∈ Word ∅
6 eleq1 ( 𝑊 = ∅ → ( 𝑊 ∈ Word ∅ ↔ ∅ ∈ Word ∅ ) )
7 5 6 mpbiri ( 𝑊 = ∅ → 𝑊 ∈ Word ∅ )
8 4 7 impbii ( 𝑊 ∈ Word ∅ ↔ 𝑊 = ∅ )