Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of Monk1 p. 37. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0xp | ⊢ ( ∅ × 𝐴 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | simprl | ⊢ ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ∅ ) | |
| 3 | 1 2 | mto | ⊢ ¬ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) ) |
| 4 | 3 | nex | ⊢ ¬ ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) ) |
| 5 | 4 | nex | ⊢ ¬ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) ) |
| 6 | elxp | ⊢ ( 𝑧 ∈ ( ∅ × 𝐴 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) ) ) | |
| 7 | 5 6 | mtbir | ⊢ ¬ 𝑧 ∈ ( ∅ × 𝐴 ) |
| 8 | 7 | nel0 | ⊢ ( ∅ × 𝐴 ) = ∅ |