Metamath Proof Explorer


Theorem 0z

Description: Zero is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion 0z 0 ∈ ℤ

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 eqid 0 = 0
3 2 3mix1i ( 0 = 0 ∨ 0 ∈ ℕ ∨ - 0 ∈ ℕ )
4 elz ( 0 ∈ ℤ ↔ ( 0 ∈ ℝ ∧ ( 0 = 0 ∨ 0 ∈ ℕ ∨ - 0 ∈ ℕ ) ) )
5 1 3 4 mpbir2an 0 ∈ ℤ