Metamath Proof Explorer


Theorem 10re

Description: The number 10 is real. (Contributed by NM, 5-Feb-2007) (Revised by AV, 8-Sep-2021) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022)

Ref Expression
Assertion 10re 1 0 ∈ ℝ

Proof

Step Hyp Ref Expression
1 df-dec 1 0 = ( ( ( 9 + 1 ) · 1 ) + 0 )
2 9re 9 ∈ ℝ
3 1re 1 ∈ ℝ
4 2 3 readdcli ( 9 + 1 ) ∈ ℝ
5 4 3 remulcli ( ( 9 + 1 ) · 1 ) ∈ ℝ
6 0re 0 ∈ ℝ
7 5 6 readdcli ( ( ( 9 + 1 ) · 1 ) + 0 ) ∈ ℝ
8 1 7 eqeltri 1 0 ∈ ℝ