| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							6p5e11 | 
							⊢ ( 6  +  5 )  =  ; 1 1  | 
						
						
							| 2 | 
							
								
							 | 
							6even | 
							⊢ 6  ∈   Even   | 
						
						
							| 3 | 
							
								
							 | 
							5odd | 
							⊢ 5  ∈   Odd   | 
						
						
							| 4 | 
							
								
							 | 
							epoo | 
							⊢ ( ( 6  ∈   Even   ∧  5  ∈   Odd  )  →  ( 6  +  5 )  ∈   Odd  )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							mp2an | 
							⊢ ( 6  +  5 )  ∈   Odd   | 
						
						
							| 6 | 
							
								1 5
							 | 
							eqeltrri | 
							⊢ ; 1 1  ∈   Odd   | 
						
						
							| 7 | 
							
								
							 | 
							3prm | 
							⊢ 3  ∈  ℙ  | 
						
						
							| 8 | 
							
								
							 | 
							5prm | 
							⊢ 5  ∈  ℙ  | 
						
						
							| 9 | 
							
								
							 | 
							3odd | 
							⊢ 3  ∈   Odd   | 
						
						
							| 10 | 
							
								9 9 3
							 | 
							3pm3.2i | 
							⊢ ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  5  ∈   Odd  )  | 
						
						
							| 11 | 
							
								
							 | 
							gbpart11 | 
							⊢ ; 1 1  =  ( ( 3  +  3 )  +  5 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							pm3.2i | 
							⊢ ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  5  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  5 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑟  =  5  →  ( 𝑟  ∈   Odd   ↔  5  ∈   Odd  ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3anbi3d | 
							⊢ ( 𝑟  =  5  →  ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ↔  ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  5  ∈   Odd  ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑟  =  5  →  ( ( 3  +  3 )  +  𝑟 )  =  ( ( 3  +  3 )  +  5 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq2d | 
							⊢ ( 𝑟  =  5  →  ( ; 1 1  =  ( ( 3  +  3 )  +  𝑟 )  ↔  ; 1 1  =  ( ( 3  +  3 )  +  5 ) ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							anbi12d | 
							⊢ ( 𝑟  =  5  →  ( ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) )  ↔  ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  5  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  5 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcev | 
							⊢ ( ( 5  ∈  ℙ  ∧  ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  5  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  5 ) ) )  →  ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) ) )  | 
						
						
							| 19 | 
							
								8 12 18
							 | 
							mp2an | 
							⊢ ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑝  =  3  →  ( 𝑝  ∈   Odd   ↔  3  ∈   Odd  ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3anbi1d | 
							⊢ ( 𝑝  =  3  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ↔  ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑝  =  3  →  ( 𝑝  +  𝑞 )  =  ( 3  +  𝑞 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( 𝑝  =  3  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 3  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqeq2d | 
							⊢ ( 𝑝  =  3  →  ( ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							anbi12d | 
							⊢ ( 𝑝  =  3  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							rexbidv | 
							⊢ ( 𝑝  =  3  →  ( ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑞  =  3  →  ( 𝑞  ∈   Odd   ↔  3  ∈   Odd  ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3anbi2d | 
							⊢ ( 𝑞  =  3  →  ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ↔  ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑞  =  3  →  ( 3  +  𝑞 )  =  ( 3  +  3 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1d | 
							⊢ ( 𝑞  =  3  →  ( ( 3  +  𝑞 )  +  𝑟 )  =  ( ( 3  +  3 )  +  𝑟 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqeq2d | 
							⊢ ( 𝑞  =  3  →  ( ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 )  ↔  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) ) )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							anbi12d | 
							⊢ ( 𝑞  =  3  →  ( ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							rexbidv | 
							⊢ ( 𝑞  =  3  →  ( ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  𝑞 )  +  𝑟 ) )  ↔  ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) ) ) )  | 
						
						
							| 34 | 
							
								26 33
							 | 
							rspc2ev | 
							⊢ ( ( 3  ∈  ℙ  ∧  3  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ ( ( 3  ∈   Odd   ∧  3  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 3  +  3 )  +  𝑟 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 35 | 
							
								7 7 19 34
							 | 
							mp3an | 
							⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							isgbo | 
							⊢ ( ; 1 1  ∈   GoldbachOdd   ↔  ( ; 1 1  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  ; 1 1  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 37 | 
							
								6 35 36
							 | 
							mpbir2an | 
							⊢ ; 1 1  ∈   GoldbachOdd   |