Metamath Proof Explorer
		
		
		
		Description:  The product of 11 (as numeral) with a number (no carry).  (Contributed by AV, 15-Jun-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 11multnc.n | ⊢ 𝑁  ∈  ℕ0 | 
				
					|  | Assertion | 11multnc | ⊢  ( 𝑁  ·  ; 1 1 )  =  ; 𝑁 𝑁 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 11multnc.n | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 2 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 3 | 1 2 2 | decmulnc | ⊢ ( 𝑁  ·  ; 1 1 )  =  ; ( 𝑁  ·  1 ) ( 𝑁  ·  1 ) | 
						
							| 4 | 1 | nn0cni | ⊢ 𝑁  ∈  ℂ | 
						
							| 5 | 4 | mulridi | ⊢ ( 𝑁  ·  1 )  =  𝑁 | 
						
							| 6 | 5 5 | deceq12i | ⊢ ; ( 𝑁  ·  1 ) ( 𝑁  ·  1 )  =  ; 𝑁 𝑁 | 
						
							| 7 | 3 6 | eqtri | ⊢ ( 𝑁  ·  ; 1 1 )  =  ; 𝑁 𝑁 |