Metamath Proof Explorer
Description: The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021)
|
|
Ref |
Expression |
|
Hypothesis |
11multnc.n |
⊢ 𝑁 ∈ ℕ0 |
|
Assertion |
11multnc |
⊢ ( 𝑁 · ; 1 1 ) = ; 𝑁 𝑁 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
11multnc.n |
⊢ 𝑁 ∈ ℕ0 |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
1 2 2
|
decmulnc |
⊢ ( 𝑁 · ; 1 1 ) = ; ( 𝑁 · 1 ) ( 𝑁 · 1 ) |
4 |
1
|
nn0cni |
⊢ 𝑁 ∈ ℂ |
5 |
4
|
mulid1i |
⊢ ( 𝑁 · 1 ) = 𝑁 |
6 |
5 5
|
deceq12i |
⊢ ; ( 𝑁 · 1 ) ( 𝑁 · 1 ) = ; 𝑁 𝑁 |
7 |
3 6
|
eqtri |
⊢ ( 𝑁 · ; 1 1 ) = ; 𝑁 𝑁 |